Electrical Circuits (2)

Lecture 1

Intro. \& Review

Dr.Eng. Basem ElHalawany

Course Info

Electric Circuits (2)

Dr. Basem ElHalawany

http://www.bu.edu.eg/staff/basem.mamdoh

Eng. Moataz ElSherbiny

http://www.bu.edu.eg/staff/basem.mamdoh-courses/12142

Multiple references will be used

Proteus Design Suite

1. Final Term Exam (75)
2. Mid Term Exam
3. Proteus Simulation and/or Hardware Implementation
4. Reports

Electric Circuits (2) - Basem ElHalawany

References

A. Circuit Analysis - Theories and Practice (Robinson \& Miller)
B. Fundamentals of Electric Circuits (Alexander and Sadiku)
C. Principles of Electric Circuits (Floyd)

Main Topics

1. Resonance
 2. Magnetically Coupled Circuits
 3. Three-Phase Circuits
 4. Transient Analysis

1. Two-port Networks
 2. Non-Linear Elements

Proteus Design Suite

Check the course website for Download and Installation details
Links for Software tutorials are added to the URL section
Electrical Circuits - Basem ElHalawany

Review

Ch (17) : ac Series-Parallel Circuits

$>$ The rules and laws which were developed for dc circuits will apply equally well for ac circuits.
\checkmark Ohm's law,
\checkmark The voltage divider rule,
\checkmark Kirchhoff's voltage law,
\checkmark Kirchhoff's current law, and
\checkmark The current divider rule.
> The major difference between solving dc and ac circuits is that analysis of ac circuits requires using vector algebra.
you should be able to add and subtract any number of vector quantities.

CHAMPLE 18-5

ac Series Circuits

Consider the network of Figure 18-20.
a. Find \mathbf{Z}_{T}.
b. Sketch the impedance diagram for the network and indicate whether the total impedance of the circuit is inductive, capacitive, or resistive.
c. Use Ohm's law to determine $\mathbf{I}, \mathbf{V}_{R}$, and \mathbf{V}_{C}.

Solution

a. The total impedance is the vector sum

$$
\begin{aligned}
\mathbf{Z}_{\mathrm{T}} & =25 \Omega+j 200 \Omega+(-j 225 \Omega) \\
& =25 \Omega-j 25 \Omega \\
& =35.36 \Omega \angle-45^{\circ}
\end{aligned}
$$

b. The corresponding impedance diagram is shown in Figure 18-21.

Because the total impedance has a negative reactance term ($-j 25 \Omega$), \mathbf{Z}_{T}
 is capacitive.

$$
\text { c. } \begin{aligned}
\mathrm{I} & =\frac{10 \mathrm{~V} \angle 0^{\circ}}{35.36 \Omega \angle-45^{\circ}}=0.283 \mathrm{~A} \angle 45^{\circ} \\
\mathrm{V}_{R} & =\left(282.8 \mathrm{~mA} \angle 45^{\circ}\right)\left(25 \Omega \angle 0^{\circ}\right)=7.07 \mathrm{~V} \angle 45^{\circ} \\
\mathrm{V}_{C} & =\left(282.8 \mathrm{~mA} \angle 45^{\circ}\right)\left(225 \Omega \angle-90^{\circ}\right)=63.6 \mathrm{~V} \angle-45^{\circ}
\end{aligned}
$$

Series-Parallel Circuits

The total impedance of the network is expressed as

$$
\mathbf{Z}_{\mathrm{T}}=\mathbf{Z}_{1} \|\left(\mathbf{Z}_{2}+\mathbf{Z}_{3}\right)
$$

$$
\begin{aligned}
\mathbf{Z}_{\mathrm{T}} & =(2 \Omega-j 8 \Omega) \|(2 \Omega-j 5 \Omega+6 \Omega+j 7 \Omega) \\
& =(2 \Omega-j 8 \Omega) \|(8 \Omega+j 2 \Omega) \\
& =\frac{(2 \Omega-j 8 \Omega)(8 \Omega+j 2 \Omega)}{2 \Omega-j 8 \Omega+8 \Omega+j 2 \Omega)} \\
& =\frac{\left(8.246 \Omega \angle-75.96^{\circ}\right)\left(8.246 \Omega \angle 14.04^{\circ}\right)}{11.66 \Omega \angle-30.96^{\circ}} \\
& =5.832 \Omega \angle-30.96^{\circ}=5.0 \Omega-j 3.0 \Omega
\end{aligned}
$$

Kirchhoff's Voltage Law and the Voltage Divider Rule

> Kirchhoff's voltage law for ac circuits may be stated as:
The phasor sum of voltage drops and voltage rises around a closed loop is equal to zero.
> Remember: The summation is generally done more easily in rectangular form than in the polar form.

CHAMPLE 18-10

Consider the circuit of Figure 18-32:
a. Calculate the sinusoidal voltages v_{1} and v_{2} using phasors and the voltage divider rule.
b. Sketch the phasor diagram showing $\mathbf{E}, \mathbf{V}_{1}$, and \mathbf{V}_{2}.

Solution
a. The phasor form of the voltage source is determined as

$$
e=100 \sin \omega t \Leftrightarrow \mathrm{E}=70.71 \angle \mathrm{~V} 0^{\circ}
$$

EHAMPLE 18-10

Kirchhoff's Voltage Law and the Voltage Divider Rule

a. The phasor form of the voltage source is determined as

$$
e=100 \sin \omega t \Leftrightarrow \mathbf{E}=70.71 \angle \mathrm{~V} 0^{\circ}
$$

Applying VDR, we get

$$
\begin{aligned}
\mathbf{V}_{1} & =\left(\frac{40 \Omega-j 80 \Omega}{(40 \Omega-j 80 \Omega)+(30 \Omega+j 40 \Omega)}\right)\left(70.71 \mathrm{~V} \angle 0^{\circ}\right) \\
& =\left(\frac{89.44 \Omega \angle-63.43^{\circ}}{80.62 \Omega \angle-29.74^{\circ}}\right)\left(70.71 \mathrm{~V} \angle 0^{\circ}\right) \\
& =78.4 \mathrm{~V} \angle-33.69^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{V}_{2} & =\left(\frac{30 \Omega+j 40 \Omega}{(40 \Omega-j 80 \Omega)+(30 \Omega+j 40 \Omega)}\right)\left(70.71 \mathrm{~V} \angle 0^{\circ}\right) \\
& =\left(\frac{50.00 \Omega \angle 53.13^{\circ}}{80.62 \Omega \angle-29.74^{\circ}}\right)\left(70.71 \mathrm{~V} \angle 0^{\circ}\right) \\
& =43.9 \mathrm{~V} \angle 82.87^{\circ}
\end{aligned}
$$

The sinusoidal voltages are determined to be

$$
\begin{aligned}
v_{1} & =(\sqrt{2})(78.4) \sin \left(\omega t-33.69^{\circ}\right) \\
& =111 \sin \left(\omega t-33.69^{\circ}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
v_{2} & =(\sqrt{2})(43.9) \sin \left(\omega t+82.87^{\circ}\right) \\
& =62.0 \sin \left(\omega t+82.87^{\circ}\right)
\end{aligned}
$$

ac Parallel Circuits

The total admittance is the vector sum of the admittances of the network.

$$
\begin{align*}
& \mathbf{Y}_{\mathrm{T}}=\mathbf{Y}_{1}+\mathbf{Y}_{2}+\cdots+\mathbf{Y}_{n} \tag{S}\\
& \mathbf{Z}_{\mathrm{T}}=\frac{1}{\mathbf{Y}_{\mathrm{T}}}=\frac{1}{\mathbf{Y}_{1}+\mathbf{Y}_{2}+\cdots+\mathbf{Y}_{n}}
\end{align*}
$$

Find the equivalent admitance and impedance of the network of Figure 18-38. Skecth the admittance diagram.
Solution The admittances of the various parallel elements are
Solution The admittances of the various parallel elements are

$$
\begin{aligned}
& \mathbf{Y}_{1}=\frac{1}{40 \Omega \angle 0^{\circ}}=25.0 \mathrm{mS} \angle 0^{\circ}=25.0 \mathrm{mS}+j 0 \\
& \mathbf{Y}_{2}=\frac{1}{60 \Omega \angle-90^{\circ}}=16 . \overline{6} \mathrm{mS} \angle 90^{\circ}=0+j 16 . \overline{6} \mathrm{mS} \\
& \mathbf{Y}_{3}=\frac{1}{30 \Omega \angle 90^{\circ}}=33 . \overline{3} \mathrm{mS} \angle-90^{\circ}=0-j 33 . \overline{3} \mathrm{mS}
\end{aligned}
$$

The total admittance is determined as

$$
\begin{aligned}
\mathbf{Y}_{\mathrm{T}} & =\mathbf{Y}_{1}+\mathbf{Y}_{2}+\mathbf{Y}_{3} \\
& =25.0 \mathrm{mS}+j 16 . \overline{6} \mathrm{mS}+(-j 33 . \overline{3} \mathrm{mS}) \\
& =25.0 \mathrm{mS}-j 16 . \overline{6} \mathrm{mS} \\
& =30.0 \mathrm{mS} \angle-33.69^{\circ} \\
\mathbf{Z}_{\mathrm{T}}= & \frac{1}{\mathbf{Y}_{\mathrm{T}}}=\frac{1}{30.0 \mathrm{mS} \angle-33.69^{\circ}}=33.3 \Omega \angle 33.69^{\circ}
\end{aligned}
$$

$$
\begin{gathered}
\mathbf{Y}_{\mathrm{T}} \\
\\
38 .
\end{gathered}
$$

ac Parallel Circuits

Find the input impedance of the circuit in Fig. 9.23. Assume that the circuit operates at $\omega=50 \mathrm{rad} / \mathrm{s}$.

Solution:

Let
$\mathbf{Z}_{1}=$ Impedance of the 2-mF capacitor
$\mathbf{Z}_{2}=$ Impedance of the 3- Ω resistor in series with the $10-\mathrm{mF}$ capacitor
$\mathbf{Z}_{3}=$ Impedance of the $0.2-\mathrm{H}$ inductor in series with the $8-\Omega$ resistor

$$
\begin{gathered}
\mathbf{Z}_{1}=\frac{1}{j \omega C}=\frac{1}{j 50 \times 2 \times 10^{-3}}=-j 10 \Omega \\
\mathbf{Z}_{2}=3+\frac{1}{j \omega C}=3+\frac{1}{j 50 \times 10 \times 10^{-3}}=(3-j 2) \Omega \\
\mathbf{Z}_{3}=8+j \omega L=8+j 50 \times 0.2=(8+j 10) \Omega
\end{gathered}
$$

The input impedance is

$$
\begin{aligned}
\mathbf{Z}_{\mathrm{in}} & =\mathbf{Z}_{1}+\mathbf{Z}_{2} \| \mathbf{Z}_{3}=-j 10+\frac{(3-j 2)(8+j 10)}{11+j 8} \\
& =-j 10+\frac{(44+j 14)(11-j 8)}{11^{2}+8^{2}}=-j 10+3.22-j 1.07 \Omega
\end{aligned}
$$

Fiqure 9.23 For Example 9.10.

Thus,

$$
\mathbf{Z}_{\mathrm{in}}=3.22-j 11.07 \Omega
$$

Examples

Find current \mathbf{I} in the circuit in Fig.

Solution:

The delta network connected to nodes a, b, and c can be converted to the Y network of Fig. 9.29. We obtain the Y impedances as follows using Eq. (9.68):

$$
\mathbf{Z}_{a n}=\frac{j 4(2-j 4)}{j 4+2-j 4+8}=\frac{4(4+j 2)}{10}=(1.6+j 0.8) \Omega^{\text {Figuve 9.28 For Example 9.12. }}
$$

$$
\mathbf{Z}_{b n}=\frac{j 4(8)}{10}=j 3.2 \Omega, \quad \mathbf{Z}_{c n}=\frac{8(2-j 4)}{10}=(1.6-j 3.2) \Omega
$$

The total impedance at the source terminals is

$$
\begin{aligned}
\mathbf{Z} & =12+\mathbf{Z}_{a n}+\left(\mathbf{Z}_{b n}-j 3\right) \|\left(\mathbf{Z}_{c n}+j 6+8\right) \\
& =12+1.6+j 0.8+(j 0.2) \|(9.6+j 2.8) \\
& =13.6+j 0.8+\frac{j 0.2(9.6+j 2.8)}{9.6+j 3} \\
& =13.6+j 1=13.64 \angle 4.204^{\circ} \Omega
\end{aligned}
$$

The desired current is

$$
\mathbf{I}=\frac{\mathbf{V}}{\mathbf{Z}}=\frac{50 \angle 0^{\circ}}{13.64 / 4.204^{\circ}}=3.666 \angle-4.204^{\circ} \mathrm{A}
$$

Figure 9.29 The circuit in Fig. 9.28 after delta-to-wye transformation.
13

Voltages and Currents with Phase Shifts

$>$ If a sine wave does not pass through zero at $t=0 \mathrm{~s}$, it has a phase shift.
$>$ Waveforms may be shifted to the left or to the right

(a) $v=V_{m} \sin (\omega t+\theta)$

(b) $v=V_{m} \sin (\omega t-\theta)$

Phasor Difference

> Phase difference refers to the angular displacement between different waveforms of the same frequency.

(a) In phase

(b) Current leads

(c) Current lags

FIGURE 15-40 Illustrating phase difference. In these examples, voltage is taken as reference.
> The terms lead and lag can be understood in terms of phasors. If you observe phasors rotating as in Figure, the one that you see passing first is leading and the other is lagging.

(b) Therefore, $\bar{i}(t)$ leads $v(t)$

AC Waveforms and Average Value

> Since ac quantities constantly change its value, we need one single numerical value that truly represents a waveform over its complete cycle.
> Average values are also called dc values, because dc meters indicate average values rather than instantaneous values.

Average in Terms of the Area Under a Curve:

$$
\text { average }=\frac{\text { area under curve }}{\text { length of base }}
$$

FIGURE 15-50 Determining aver-
> This approach is valid regardless of waveshape.

$$
\text { average }=(80+60+60+95+75) / 5=74
$$

Or use area

$$
\frac{(80 \times 1)+(60 \times 2)+(95 \times 1)+(75 \times 1)}{5}=74
$$

Chapter (15): AC Fundamentals

Sine-wave Averages

Full Cycle Sine Wave Average:

$>$ Because a sine wave is symmetrical, its area below the horizontal axis is the same as its area above the axis;
$>$ Thus, over a full cycle its net area is zero, independent of frequency and phase angle.

Half-wave average:
$>$ The area under the half-cycle is:

$$
\begin{array}{r}
\text { area }=\int_{0}^{\pi} I_{m} \sin \alpha d \alpha=\left[-I_{m} \cos \alpha\right]_{0}^{\pi}=2 I_{m} \\
I_{\mathrm{avg}}=\frac{2 I_{m}}{2 \pi}=\frac{I_{m}}{\pi}=0.318 I_{m}
\end{array}
$$

Full-wave average:

$$
I_{\mathrm{avg}}=\frac{2\left(2 I_{m}\right)}{2 \pi}=\frac{2 I_{m}}{\pi}=0.637 I_{m}
$$

2

Effective Values - Root Mean Square (rms) Values

$>$ An effective (rms) value is an equivalent dc value:
\checkmark it tells you how many volts of dc that a time-varying waveform is equal to in terms of its ability to produce average power.

For the
Sinsusoidal ac case:

$$
\begin{aligned}
p(t) & =i^{2} R \\
& =\left(I_{m} \sin \omega t\right)^{2} R=I_{m}^{2} R \sin ^{2} \omega t \\
& =I_{m}^{2} R\left[\frac{1}{2}(1-\cos 2 \omega t)\right]
\end{aligned}
$$

$$
p(t)=\frac{I_{m}{ }^{2} R}{2}-\frac{I_{m}{ }^{2} R}{2} \cos 2 \omega t
$$

Calculating the ac average power:

$$
P_{\mathrm{avg}}=\text { average of } p(t)=\frac{I_{m}{ }^{2} R}{2}
$$

$p(t)=2$ R. Therefore,$p(t)$ varies cyclically.
(a) ac Circuit

By Equating 1 to achieve the same average power as the dc , we get:

$$
\begin{gathered}
P_{\mathrm{avg}}=P=I^{2} R \quad \mathbf{2} \\
I^{2}=\frac{I_{w z}^{2}}{2}={ }^{I=\sqrt{\frac{I_{m}^{2}}{2}}=\frac{I_{m}}{\sqrt{2}}=0.707 I_{m}}
\end{gathered}
$$

Which is the rms value
Electrical Circuits - Basem ElHalawany

Effective Values - Root Mean Square (rms) Values

Effective voltage can be expressed also as:

$$
V_{\mathrm{eff}}=\frac{V_{m}}{\sqrt{2}}=0.707 V_{m}
$$

effective values for sinusoidal waveforms depend only on amplitude
It is important to note that these relationships hold only for sinusoidal waveforms. However, the concept of effective value applies to all waveforms

General Equation for Effective Values:

$$
I_{\mathrm{eff}}=\sqrt{\frac{1}{T} \int_{0}^{T} i^{2} d t} \quad I_{\mathrm{eff}}=\sqrt{\frac{\text { area under the } i^{2} \text { curve }}{\text { base }}}
$$

Get the square root of the mean value of the squared waveform.
root - mean - square

20

Ac Power

In the circuit of Fig. $11.26, \mathbf{Z}_{1}=60 /-30^{\circ} \Omega$ and $\mathbf{Z}_{2}=40 / 45^{\circ} \Omega$. Calculate the total: (a) apparent power, (b) real power, (c) reactive power, and (d) pf.

Solution:

The current through \mathbf{Z}_{1} is

$$
\mathbf{I}_{1}=\frac{\mathbf{V}}{\mathbf{Z}_{1}}=\frac{120 \angle 10^{\circ}}{60 \angle-30^{\circ}}=2 \angle 40^{\circ} \mathrm{Arms}
$$

while the current through \boldsymbol{Z}_{2} is

$$
\mathbf{I}_{2}=\frac{\mathbf{V}}{\mathbf{Z}_{2}}=\frac{120 \angle 10^{\circ}}{40 \angle 45^{\circ}}=3 \angle-35^{\circ} \mathrm{Arms}
$$

The complex powers absorbed by the impedances are

$$
\begin{aligned}
& \mathbf{S}_{1}=\frac{V_{\mathrm{rms}}^{2}}{\mathbf{Z}_{1}^{*}}=\frac{(120)^{2}}{60 \angle 30^{\circ}}=240 \angle-30^{\circ}=207.85-j 120 \mathrm{VA} \\
& \mathbf{S}_{2}=\frac{V_{\mathrm{rms}}^{2}}{\mathbf{Z}_{2}^{*}}=\frac{(120)^{2}}{40 \angle-45^{\circ}}=360 \angle 45^{\circ}=254.6+j 254.6 \mathrm{VA}
\end{aligned}
$$

The total complex power is

$$
\mathbf{S}_{t}=\mathbf{S}_{1}+\mathbf{S}_{2}=462.4+j 134.6 \mathrm{VA}
$$

(a) The total apparent power is

$$
\left|\mathbf{S}_{l}\right|=\sqrt{462.4^{2}+134.6^{2}}=481.6 \mathrm{VA} .
$$

(b) The total real power is $P_{t}=\operatorname{Re}\left(\mathbf{S}_{t}\right)=462.4 \mathrm{~W}$ or $P_{t}=P_{1}+P_{2}$.
(c) The total reactive power is
$Q_{t}=\operatorname{Im}\left(\mathbf{S}_{t}\right)=134.6 \mathrm{VAR}$ or $Q_{t}=Q_{1}+Q_{2}$.
(d) The pf $=P_{t} /\left|\mathbf{S}_{t}\right|=462.4 / 481.6=0.96$ (lagging).

21

Ac Power

(a) The total apparent power is

$$
\left|\mathbf{S}_{t}\right|=\sqrt{462.4^{2}+134.6^{2}}=481.6 \mathrm{VA} .
$$

(b) The total real power is

$$
P_{t}=\operatorname{Re}\left(\mathbf{S}_{t}\right)=462.4 \mathrm{~W} \text { or } P_{t}=P_{1}+P_{2} .
$$

Figure II.26 For Example 11.14.
(c) The total reactive power is

$$
Q_{t}=\operatorname{Im}\left(\mathbf{S}_{t}\right)=134.6 \mathrm{VAR} \text { or } Q_{t}=Q_{1}+Q_{2} .
$$

(d) The $\mathrm{pf}=P_{t} /\left|\mathbf{S}_{t}\right|=462.4 / 481.6=0.96$ (lagging).

We may cross check the result by finding the complex power \mathbf{S}_{s} supplied by the source.

$$
\begin{aligned}
\mathbf{I}_{t}=\mathbf{I}_{1}+\mathbf{I}_{2} & =(1.532+j 1.286)+(2.457-j 1.721) \\
& =4-j 0.435=4.024 /-6.21^{\circ} \mathrm{A} \mathrm{rms} \\
\mathbf{S}_{s}=\mathbf{V I}_{t}^{*} & =\left(120 \angle 10^{\circ}\right)\left(4.024 / 6.21^{\circ}\right) \\
& =482.88 \angle 16.21^{\circ}=463+j 135 \mathrm{VA}
\end{aligned}
$$

which is the same as before.

